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1. INTRODUCTION 
In a recent paper, Ranger & O'Neill (1978) consider the Stokes flow problem of a sphere 
rotating slowly in the presence of a plane interface. Bispherical coordinates are used, and the 
torque on the sphere is calculated in the f o r m o f  an infinite series. The authors remark that the 
more general problem of two rotating spheres, one in each phase, can be treated by the same 
method. This note addresses this two sphere problem. 

2. FORMULATION OF PROBLEM IN STOKES FLOW 

Letting j = 1, 2, assume sphere Sj lies in a fluid of viscosity pj, with x = 0 as the fluid 
interface; the fluid having viscosity/~1,/~2 occupying the half space x >0 ,  x < 0 ,  respectively. 
The line of centres of the spheres is perpendicular to the fluid interface. Sphere Sj has radius aj, 
is distance d r from the interface, and rotates slowly about the line of centres (axis of symmetry) 
with angular velocity ~oj; inertia terms are neglected. 

Using the notation of Ranger & O'Neill (1978), the equations are set up in terms of the 

variable Vj, where the fluid velocity q~ = Vj(x, p)lp~, (x, p, ~) are cylindrical polar coordinates, 
is a unit vector perpendicular to the azimuthal plane. It is thus required to solve the boundary 

value problem: 

/ 0 2 ¢92 1 0 \ - 
= v i - -  O; j = l ,  x > 0 ;  j = 2 ,  x < 0 ;  [1] 

with 

OV, OV2 
V, = V2, m - ~ x  = ~2-~x 

Vj=o~jp 2 on Sj ; 

o~ --> 0 at infinity. 

on x = O ;  

[2] 

Defining bispherical coordinates by 

= c sin ~ c sinh 
P cosh ~j - cos 71' x = cosh ~ - cos r / '  

f 

the spheres are given by ~j = aj, with am> 0, a2 < 0, 

c > 0 ,  

aj = c [cosech a t l, dj = at cosh a t. 

M9 
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Suitable solutions of [l] are 

V i = c (cosh ~: - cos "0)-t/2 ~ [A o) cosh p~ + B. °) sinh p~] p t (cos "0) sin ~, 
n = l  

[31 

where n + 1/2 has been denoted by p. The interface conditions in [2] requiring continuity of 
velocity and stress give An(t)=An a), B, (t)= ~l/./n (2) where g =/z2//zt; and the boundary con- 

ditions on Sj require Vj = tojc 2 sine r/(cosh a ~ -  cos ~)-2 on s ¢ =ai .  Using a well-known series 
involving the Legendre functions, the boundary value problem reduces to two equations in 
A, a), B, a), with solution 

A n  (2) = AI, (t) = 2 ~/(2) c (tot e-W' sinh po t  2 - ~t,l,to 2 e w2 sinh p a  I )/A, [41 

B. a) = B.(t)llz = 2X/(2) c(to2 d 'a2 cosh p a t  - tot e -pa' cosh p o t 2 ) / A ,  [5] 

where A = cosh p a t  sinh pot2 -- g cosh pa2 sinh p a t .  At this stage it is interesting to note that if 
= 1 the formulas agree with those of Jeffery (1915) who considered the motion of a single 

viscous fluid generated by the rotation of two spheres. 

3. TORQUE ON A SPHERE 

Using Jeffery's formula for the torque - Ti/~, (where/~ is a unit vector perpendicular to the 
plane of motion) with 

Tj = 27r/zj p3 dr/ on ~ = aj ; 

gives the torque - Td~ on sphere S t with 

_ Tt _ ~ 2n(n + 1) e_V~,[(l + gto) sinhpa2 + g(to - 1) coshpa2] 
T I -  8,/tg lto 1C 3 -- n = t "-'---~ " ~  [6] 

where to =to2/to|. The torque on sphere $2 can be found similarly, r, can be evaluated 
numerically for given values of the sphere parameters aj, and given viscosity ratio p., and 
angular velocity ratio to (which can take either sign). For small values of aj it would be 
desirable for rapid convergence to use a Watson transform as Davis et al. (1976). When 
ot2--~- oo the infinite series[6] for the torque reduces to that found by Ranger & O'Neill (1978). 
Their numerical calculations show that, in their one sphere problem, ~'t increases as g 

increases. 
Several interesting results emerge in the special case of two spheres with equal radii 

c ]cosech a [, at c ]coth a[ on each side of the interface, where a = Otl = - -  t~2, Ot > 0. From [6] the 

torque on Sj is given by 

2n (n+  1)[  e_2Va_ 2g ] ~'1 = l - A  to e-2V~ 
.=l sinh 2pa  1 + g ' 

where A = (1 - g) / ( l  + g).  Thus, using an infinite series for cosech 3, 

.,=o 1 + g / c°sech3 2(m . [71 

For g # 0 the influence of the rotation of sphere $2 for to > 0 is thus seen to reduce the value of 
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~'t. A zero torque gives the value of to corresponding to the angular velocity with which $1 
rotates if left free. Jeffery (1915) gives a table of such values in the case of a uniform fluid 

(p. = 1, A = 0). As an illustration of changing the viscosity ratio p, some numerical values for ~'~ 
are given below in table 1. The value of to is fixed at 30; and the value of a fixed at 1.0, so 
that the ratio of the distance of the centre of each sphere from the interface to the radius of the 
sphere is 1.5431. For small p, the torque is positive, decreases to zero at 9. = 0.9576, and 
continues to decrease as /z  increases beyond this value. 

Table i. Values of ~ against v., for fixed a = 1 (SO d/a = 1.5431), to = 30 

# 0 0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0 

'rl 0.5961 0.4853 0.3930 0.1899 -0.0132 -0.2163 -0.4194 -0.5117 -0.5645 

Consider now some given angular velocity ratios for this case of two equal spheres. 
(i) to = l, the spheres rotate with equal angular velocity. 

~'1 = ~ ( -  1) m cosech ~ (m + 1)or, 
m=O 

and the stress is zero on the interface, see [5]. This result is identical with the limit/~ -*0 in [7], 

thus the sphere S~ feels no influence of the rotating sphere 82 which is in an inviscid fluid. 
(ii) to = - 1, the spheres rotate with angular velocities equal in magnitude but opposite in 

direction. 

1", = m~=o [cosech3 (2m + 1 ) a -  ( :1+3;? cosech3 2(m + l , a ] ,  

giving an interface with zero velocity only in the special case/~ = l, see [4]. 
(iii) to = - l//~, the spheres rotate in opposite directions with magnitudes inversely propor- 

tional to the viscosity of the fluids in which they are immersed, -/~2to2 =/~lto~. 

rl = ~ cosech 3 (m + 1)a, 
ra=O 

and the velocity is zero at the interface. However,  the interface is not a stress-free surface, see 
Davis et al. (1975). This value of torque is identical with the limiting case of [6] when a 2 ~ 0 ,  
to2--)0, that is the fluid with viscosity p.2 is replaced by a rigid fixed plane. 

(iv) As a special case of (i) consider a dumbbell of two equal spheres rotating with the same 
angular velocity and their plane of tangency at the fluid interface. In the limit as a i"-)0 

3 
• l = ~ ~'(3) cosech 3 a ,  

and there is a similar expression for ,2, thus the torque on the dumbbell agrees with the 
expression of Schneider et al. (1973). 
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